Chinese Chemical Letters Vol. 14, No. 11, pp 1179 – 1181, 2003 http://www.imm.ac.cn/journal/ccl.html

A New Inorganic-organic Nanocomposite, 4,4' -Bipyridine Intercalated into Lamellar FePS₃

Xing Guo CHEN¹, Chu Luo YANG¹, Jin Gui QIN¹*, Kyuya YAKUSHI², Yasuhiro NAKAZAWA², Kenji ICHIMURA³

¹Department of Chemistry, Wuhan University, Wuhan 430072 ²Institute for Molecular Science, Okazaki 444, Japan ³Department of Chemistry, Faculty of Science, Kumamoto University, Kumamoto 860, Japan

Abstract: A new intercalation compound, $Fe_{0.85}PS_3(4,4'-bipyH)_{0.30}$ (4,4'-bipy = 4,4'-bipyridine), is obtained by the intercalation of 4,4'-bipyridine·2HCl with lamellar FePS₃, which is characterized by elemental analysis, powder X-ray diffraction, infrared spectroscopy. By comparison with the pure FePS₃, the lattice spacing of $Fe_{0.85}PS_3(4,4'-bipyH)_{0.30}$ is expanded by ~ 5.7 Å, indicating that the ring plane of the guest is perpendicular to the layer of the host. The magnetic property of $Fe_{0.85}PS_3(4,4'-bipyH)_{0.30}$ is studied with SQUID. It exhibits an antiferromagnetic phase transition with T_N of about 70 K.

Keywords: Intercalation, lamellar FePS₃, magnetic property.

Interest in nanocomposite materials is increased due to their great significance in both fundamental and applied research fields in the past two decades¹. Intercalation of organic species into lamellar inorganic solids provides a useful approach to design and synthesize inorganic-organic nanocomposite materials with novel functional properties compared with the parent compounds².

The transition metal phosphorous trisulfides, MPS₃ (M stands for a metal in +2 oxidation state), are lamellar compounds made up of two-dimensional arrays of the M^{2+} cations coordinated to $P_2S_6^{4+}$ bridging ligands (**Figure 1**). Some MPS₃ phases containing the paramagnetic M^{2+} ions (Mn^{2+} , S=5/2 and Fe²⁺, S=2, *etc.*) show the two-dimensional antiferromagnetism with Neel temperature of 78 and 120 K, respectively ³. Sometimes, the magnetic property of some intercalates can be dramatically changed after intercalation ⁴⁺⁶. In this paper, we present the synthesis, structural characterization and magnetic property of Fe_{0.85}PS₃(4,4'-bipyH)_{0.30}.

Pure FePS₃ was synthesized as described by Taylor ⁷, which was identified by means of powder X-ray diffraction (XRD) and indexed as space group $C_{2/m}$ in a monoclinic unit cell (**Table 1**). The intercalate was prepared by stirring the mixture of FePS₃ (black powder, 0.25g) and 4,4'-bipyridine·2HCl (0.30 g) in the presence of 10 mL of 0.02 mol/L EDTA and the buffer solution of Na₂CO₃ / NaHCO₃ sealed in an ampoule under vacuum for 15 days at 60°C. After cooling, the black powder was filtered off,

^{*} Corresponding author: jgqin@whu.edu.cn.

and washed with distilled water and ethanol, and then dried in air. Elemental analysis led to the formula $Fe_{0.85}PS_3(4,4'-bipyH)_{0.30}$ (Found: C, 16.43; H, 1.04; N, 3.13(%). Calcd: C, 16.25; H, 1.23; N, 3.79 (%)).

From the XRD results, it was found that the *001* reflections of pure FePS₃ have totally disappeared and a new series of *001* reflections are observed with the lattice spacing expansion (Δd) of ca. 5.7 Å in Fe_{0.85}PS₃ (4,4'-bipyH)_{0.30}. This indicated that 4,4'-bipyH ring plane is almost perpendicular to the layer of the host (as shown in **Figure 1**) similar to that of pyridine intercalated into MnPS₃⁵. The XRD reflection patterns can be readily indexed in the space group closely related to that of pure FePS₃, in which the calculated a, b and β values are almost identical with that of pure FePS₃ (**Table 1**).

Figure 1 The possible orientation of the guest (4,4'-bipyH) between the interlayered space of the host (FePS₃)

Table 1 Lattice spacing (d) and calculated unit cell parameters

Compound	d (Å)	a (Å)	b (Å)	c (Å)	β (deg)
FePS ₃	6.439	5.934	10.280	6.722	107.16
$Fe_{0.85}PS_3$ (4,4'-bipyH) _{0.30}	12.13	6.076	10.133	13.292	113.36

The intense bands of IR spectrum at 602 and 552 cm⁻¹ of Fe_{0.85}PS₃ (4,4'-bipyH)_{0.30} are assigned to the v (PS₃) asymmetric stretching band from the splitting of 570 cm⁻¹ in FePS₃⁶, which reflects the occurrence of intralamellar Fe²⁺ ion vacancies formed by the coordination of Fe²⁺ ions with EDTA during the intercalation ⁶. The IR absorption in the 700~3500 cm⁻¹ range can be assigned to the guests. By comparison of the infrared spectra of Fe_{0.85}PS₃ (4,4'-bipyH)_{0.30}, 4,4'-bipy ⁸, 4,4'-bipy·HX, 4,4'-bipy·2HX (X = I, Br, Cl, ClO₄ *etc.*)^{9,10} and 4,4'-bipy·Y (Y = AgNO₃, 2ICl)¹¹, it was found that the absorption bands of Fe_{0.85}PS₃ (4,4'-bipyH)_{0.30} at 1599, 1498, 1074, 855, 806 cm⁻¹ *etc.* are similar to the bands exhibited by neutral 4,4'-bipyridine, which belongs to the characteristic absorption of the 4,4'-bipy ring. However, the bands at around 1619, 1506, 1475, 1394, 1005, 725 cm⁻¹ *etc.* are different from those related absorption bands of 4,4'-bipy and

A New Inorganic-organic Nanocomposite, 4,4' -Bipyridine 1181 Intercalated into Lamellar FePS₃

4,4'-bipy·2HCl but similar to those of 4,4'-bipy·HX. This result is in agreement with the elemental data, which indicated that the inserted guest is the mono-protonated 4,4'-bipy to maintain the charge balance of the intercalate.

The temperature dependence of the magnetic susceptibility of $Fe_{0.85}PS_3$ (4,4'-bipyH)_{0.30} is shown in **Figure 2**. $Fe_{0.85}PS_3$ (4,4'-bipyH)_{0.30} exhibits paramagnetic behavior above 90 K, which is in agreement with Curie-Waiss law. At around 70 K it exhibits an antiferromagnetic phase transition. It is obvious that its antiferromagnetic transition temperature is much lower than that of pure FePS₃ (T_N = 120 K). This is derived from the dilution of the coupling interaction between the Fe²⁺ ions caused by the intralamellar Fe²⁺ ion vacancies.

Figure 2 The temperature (T) dependence of the molar magnetic susceptibility (χ) of Fe_{0.85}PS₃ (4,4'-bipyH)_{0.30}

Acknowledgment

We thank the National Natural Science Foundation of China for financial support.

References

- 1. E. Ruiz-Hitzky, B. Casal, P. Aranda, J. C. Galvan, Rev. in Inorg. Chem., 2001, 21(1-2), 125.
- 2. R. Schollhorn, Chem. Mater., 1996, 8, 1747.
- 3. R. Brec, Solid State Ionics, 1986, 22, 3.
- 4. P. G. Lacroix, R. Clement, K. Nakatani, J. Zyss, I. Ledaux, Science, 1994, 263, 658.
- 5. P. A. Joy, S. Vasudevan, J.Am. Chem. Soc., 1992, 114, 7792.
- C. Yang, X. Chen, J. Qin, K. Yakushi, Y. akazawa, K. Ichimura, J. Solid State. Chem., 2000, 150, 281.
- 7. B. E. Taylor, J. Steger, A. Wold, J.Solid State Chem., 1973, 7, 461.
- 8. Y. Gondo, Y. Kauda, Bull. Chem. Soc. Japan, 1965, 38 (7), 1187.
- 9. Z. Dega-Szafran, Bull. Acad. Pol. Sci., Ser. Sci. Chim., 1979, 27(4), 267.
- 10. J. Metz, O. Schneider, M. Hanack, Spectrochim. Acta, 1982, 38, 1265.
- 11. A. I. Popov, J. C. Marshall, F. B. Stute, W. B. Oerson, J. Am. Chem. Soc., 1961, 83, 3586.

Received 4 November, 2002